UKCP18 SPEED bias-corrected suitability distribution: histograms
Load packages, read data and source custom scripts
rm(list = ls())
library(tidyr)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(purrr)
path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
path_uk_1km_suitability <- file.path(path_modelled, "uk-1km-suitability")
source(file.path(path_proj, "src", "63-tidy-names.R"))
source(file.path(path_proj, "src", "64-read-sce.R"))
speed_tag <- "bias_corrected_01"
prefix <- c("binom_maskout_simple", "binom_maskout_interact")
prefix_regex <- paste0("(", paste0(prefix, collapse = "|"), ")")
sce_type_regex <- paste0("(", paste("ukcp18-speed_rcp\\d+", speed_tag, sep = "_"),
"|chess)")
regex <- paste("^uk_1km_suitability", prefix_regex, sce_type_regex,
"20yr-mean-annual", "(.+)\\.fst$", sep = "_")
Prepare dataset for histograms
suitability_files <- list.files(path_uk_1km_suitability, regex, full.names = TRUE)
data_plot <- tibble::tibble(file = basename(suitability_files)) %>%
tidyr::extract(file, c("model", "sce-type", "period"), remove = FALSE, regex) %>%
tidyr::extract(file, c("rcp"), remove = FALSE, "ukcp18-speed_(rcp\\d+)") %>%
dplyr::mutate(period = sub("(\\d{4})\\d*-(\\d{4})\\d*", "\\1-\\2", period)) %>%
within(period[period == "baseline"] <- "1991-2011 (predicted)") %>%
dplyr::mutate(
data = map2(file, model,
~ read_sce1(file.path(path_uk_1km_suitability, .x), .y, TRUE, FALSE))
)
rcps <- unique(data_plot$rcp[!is.na(data_plot$rcp)])
data_observed <- fst::read_fst(file.path(path_processed, "uk_1km_dataframe_train_full.fst")) %>%
dplyr::mutate_at(vars(matches("^count_[0-9]")), ~ . / count_no0) %>%
dplyr::select(id, matches("^count_[1-5]")) %>%
dplyr::rename_with(~ sub("^count_", "", .))
model_unique <- unique(data_plot$model)
data_observed <- tibble::tibble(
file = "uk_1km_dataframe_train_full.fst", rcp = NA, model = model_unique,
`sce-type` = NA, period = "1991-2011 (observed)",
data = rep(list(data_observed), length(model_unique))
)
data_plot <- bind_rows(data_observed, data_plot) %>%
dplyr::mutate(model = gsub("_", " ", stringr::str_to_sentence(model))) %>%
tidyr::unnest(data) %>%
dplyr::rename_with(~ sub("^", "class_", .), matches("^[0-9]"))
land_classes <- grep("^class_", names(data_plot), value = TRUE)
Custom function to make histograms
hist_trend <- function (data, var, binwidth = 0.05) {
gg <- ggplot(data) +
geom_histogram(aes_string(x = var, y = paste0("..density..*", binwidth)),
binwidth = binwidth, boundary = TRUE,
fill = "lightblue", col = "black", size = rel(0.15)) +
facet_grid(period ~ model) +
labs(y = NULL, x = "Proportion") +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(limits = c(0, 1)) +
theme_bw()
print(gg)
}
Visualize suitability histograms across scenatios
for (land_class in land_classes) {
cat("\n\n")
cat(paste0("## ", tidy_make_classes(get_land_class(land_class), 2), "\n\n"))
for (rcp in rcps) {
cat("\n\n")
cat(paste0("### ", toupper(rcp), "\n\n"))
data_hist <- data_plot[data_plot$rcp == rcp | is.na(data_plot$rcp), ]
hist_trend(data_hist, land_class)
}
}
(1) Arable
RCP26
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP45
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP60
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP85
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
(2) Wetland
RCP26
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP45
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP60
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP85
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
(3) Improved grassland
RCP26
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
RCP45
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
RCP60
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
RCP85
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
(4) Forest
RCP26
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP45
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP60
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
RCP85
#> Warning: Removed 324612 rows containing non-finite values (stat_bin).
(5) Semi natural grassland
RCP26
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
RCP45
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
RCP60
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
RCP85
#> Warning: Removed 299898 rows containing non-finite values (stat_bin).
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 1463.775 76.073 1542.072