UKCP18 SPEED bias corrected scenarios: create metadata and convert to tif
Create metadata of bias corrected datasets corresponding to environmental scenarios for
periods of 20 years from UKCP18 SPEED project, and convert them to tif
format. The
scenarios correspond to different assumptions for Representative Concentration Pathway
(RCP) which is related to greenhouse gas concentrations.
Load packages, read data and source custom scripts
rm(list = ls())
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(stars)
#> Loading required package: abind
#> Loading required package: sf
#> Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_raw <- file.path(path_data, "raw")
path_cleaned <- file.path(path_data, "cleaned")
path_sce <- file.path(path_raw, "ukcp18-speed-bias-corrected")
source(file.path(path_proj, "src", "22-nc-to-tif.R"))
Create metadata using the file names
regex_extract <- paste(
"ukcp18-speed_(rcp[[:digit:]]+)", "bias_corrected", "01_(.+)",
"uk_1km_20yr-([[:alpha:]]+)-([[:alpha:]]+)", "([[:digit:]]+)-([[:digit:]]+)\\.nc",
sep = "_"
)
metadata <- create_metadata(path_sce, regex_extract)
Convert to tif
purrr::walk2(metadata$file, metadata$variable, ~ nc_to_tif(.x, .y, path_sce, path_cleaned))
Save metadata
write.csv(metadata, file.path(path_sce, "metadata.csv"), row.names = FALSE)
metadata <- mutate(metadata, file = sub("\\.nc$", "\\.tif", file))
write.csv(metadata, file.path(path_cleaned, "ukcp18-speed_bias_corrected_01_metadata.csv"),
row.names = FALSE)
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 649.382 49.861 699.645