SPIFA Urban Ipixuna Season Missing: summarise results
Visualise and summarise the resulst of SPIFA models when removing the missing values.
Load required libraries and data
rm(list = ls())
library(day2day)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(mirt)
#> Loading required package: stats4
#> Loading required package: lattice
library(spifa)
library(tidyr)
library(sf)
#> Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
library(purrr)
library(ggplot2)
path_main <- git_path()
path_data <- file.path(path_main, "data")
path_raw <- file.path(path_data, "raw")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
fidata <- file.path(path_processed, "fi-items-ipixuna-urban.gpkg") |>
st_read(as_tibble = TRUE)
#> Reading layer `fi-items-ipixuna-urban' from data source
#> `/home/rstudio/documents/projects/food-insecurity-mapping/data/processed/fi-items-ipixuna-urban.gpkg'
#> using driver `GPKG'
#> Simple feature collection with 200 features and 36 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -71.70038 ymin: -7.06058 xmax: -71.68109 ymax: -7.03724
#> Geodetic CRS: WGS 84
samples1 <- readRDS(file.path(path_modelled, "spifa-ipixuna-urban-miss-3gp.rds"))
samples2 <- readRDS(file.path(path_modelled, "spifa-ipixuna-urban-miss-dry-3gp.rds"))
samples3 <- readRDS(file.path(path_modelled, "spifa-ipixuna-urban-miss-wet-3gp.rds"))
iter <- nrow(samples1[["theta"]])
thin <- 10
MCMC convergence
Difficulty parameters
list(samples1, samples2, samples3) |>
map(~ gather.spifa(as_tibble(.x, 0, 1, select = "c"))) |>
bind_rows(.id = "Model") |>
ggplot(aes(iteration, Value, group = Parameters, col = Parameters)) +
geom_path(alpha = 0.6, linewidth = rel(0.1)) +
facet_wrap(~ Model, ncol = 1)
Discrimination parameters
list(samples1, samples2, samples3) |>
map(~ gather.spifa(as_tibble(.x, 0, 1, select = "a"))) |>
bind_rows(.id = "Model") |>
ggplot(aes(iteration, Value, group = Parameters, col = Parameters)) +
geom_path(alpha = 0.6, linewidth = rel(0.1)) +
facet_wrap(~ Model, ncol = 1) +
theme(legend.position = "none")
Latent abilities
list(samples1, samples2, samples3) |>
map(~ gather.spifa(select(as_tibble(.x, 0, 1, select = "theta"), 1:10))) |>
bind_rows(.id = "Model") |>
ggplot(aes(iteration, Value, group = Parameters, col = Parameters)) +
geom_path(alpha = 0.6, linewidth = rel(0.1)) +
facet_wrap(~ Model, ncol = 1)
Correlation parameters
list(samples1, samples2, samples3) |>
map(~ gather.spifa(as_tibble(.x, 0, 1, select = "corr"))) |>
bind_rows(.id = "Model") |>
ggplot(aes(iteration, Value, group = Parameters, col = Parameters)) +
geom_path(alpha = 0.6, linewidth = rel(0.1)) +
facet_wrap(~ Model, ncol = 1)
Gaussian processes standard deviations
list(samples1, samples2, samples3) |>
map(~ gather.spifa(as_tibble(.x, 0, 1, select = "mgp_sd"))) |>
bind_rows(.id = "Model") |>
ggplot(aes(iteration, Value, group = Parameters, col = Parameters)) +
geom_path(alpha = 0.6, linewidth = rel(0.1)) +
facet_wrap(~ Model, ncol = 1)
Gaussian processes scale parameters
list(samples1, samples2, samples3) |>
map(~ gather.spifa(as_tibble(.x, 0, 1, select = "mgp_phi"))) |>
bind_rows(.id = "Model") |>
ggplot(aes(iteration, Value, group = Parameters, col = Parameters)) +
geom_path(alpha = 0.6, linewidth = rel(0.1)) +
facet_wrap(~ Model, ncol = 1)
Credible intervals
Discrimination parameters
list(samples1, samples2, samples3) |>
map(~ summary(as_tibble(.x, iter/2, select = "a"))) |>
bind_rows(.id = "Model") |>
gg_errorbarh(sorted = FALSE) +
facet_wrap(~ Model)
Difficulty parameters
list(samples1, samples2, samples3) |>
map(~ summary(as_tibble(.x, iter/2, select = "c"))) |>
bind_rows(.id = "Model") |>
gg_errorbarh(sorted = FALSE) +
geom_vline(xintercept = 0, linetype = "dashed") +
facet_wrap(~ Model) +
theme_bw() +
theme(legend.position = "bottom")
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 80.322 3.316 98.850