SPIFA Urban Ipixuna: DIC
Visualise and summarise the resulst of CIFA models.
Load required libraries and data
rm(list = ls())
library(day2day)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(mirt)
#> Loading required package: stats4
#> Loading required package: lattice
library(spifa)
library(tidyr)
library(sf)
#> Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
library(purrr)
library(ggplot2)
path_main <- git_path()
path_data <- file.path(path_main, "data")
path_raw <- file.path(path_data, "raw")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
fidata <- file.path(path_processed, "fi-items-ipixuna-urban.gpkg") |>
st_read(as_tibble = TRUE)
#> Reading layer `fi-items-ipixuna-urban' from data source
#> `/home/rstudio/documents/projects/food-insecurity-mapping/data/processed/fi-items-ipixuna-urban.gpkg'
#> using driver `GPKG'
#> Simple feature collection with 200 features and 36 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -71.70038 ymin: -7.06058 xmax: -71.68109 ymax: -7.03724
#> Geodetic CRS: WGS 84
samples1 <- readRDS(file.path(path_modelled, "spifa-ipixuna-urban-1gp.rds"))
samples2 <- readRDS(file.path(path_modelled, "spifa-ipixuna-urban-2gp.rds"))
samples3 <- readRDS(file.path(path_modelled, "spifa-ipixuna-urban-3gp.rds"))
iter <- nrow(samples1[["theta"]])
DIC computation
dic(as_tibble(samples1, burnin = 1 * iter/5))
#> $average_of_deviance
#> [1] 1866.667
#>
#> $n_effec_params
#> [1] 335.1415
#>
#> $dic
#> [1] 2201.808
dic(as_tibble(samples2, burnin = 1 * iter/5))
#> $average_of_deviance
#> [1] 1861.217
#>
#> $n_effec_params
#> [1] 338.6363
#>
#> $dic
#> [1] 2199.853
dic(as_tibble(samples3, burnin = 1 * iter/5))
#> $average_of_deviance
#> [1] 1857.537
#>
#> $n_effec_params
#> [1] 341.2626
#>
#> $dic
#> [1] 2198.799
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 15.957 2.736 58.882