Municipality effects of remoteness and sanitation on BW, LBW and PTB


In this script, we compute municipality effects of remoteness and sanitation on birth outcomes. The resulting figure can be seen at section Visualize municipality effects of remoteness and sanitation. This output corresponds to Extended Data Figure 8 of our paper.

Load packages, read data and source custom scripts

rm(list = ls())
library(bamlss)
#> Loading required package: coda
#> Loading required package: colorspace
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
#> 
#> Attaching package: 'bamlss'
#> The following object is masked from 'package:mgcv':
#> 
#>     smooth.construct
library(gamlss.dist)
#> Loading required package: MASS
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following object is masked from 'package:MASS':
#> 
#>     select
#> The following object is masked from 'package:bamlss':
#> 
#>     n
#> The following object is masked from 'package:nlme':
#> 
#>     collapse
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(purrr)
library(patchwork)
#> 
#> Attaching package: 'patchwork'
#> The following object is masked from 'package:MASS':
#> 
#>     area
library(ggplot2)

path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
path_summarised <- file.path(path_data, "summarised")

source(file.path(path_proj, "src", "51-bamlss.R"))
source(file.path(path_proj, "src", "57-bamlss-vis-paper.R"))
source(file.path(path_proj, "src", "56-bamlss-vis-gg.R"))


bwdata_file <- file.path(path_processed, "bwdata_41_model.fst")
path_model_bw_full <- file.path(path_modelled, "bw-10-full-re-t-burned.rds")
path_model_bw_growth <- file.path(path_modelled, "bw-20-growth-re-t-burned.rds")
path_model_lbw_full <- file.path(path_modelled, "lbw-10-full-re-burned.rds")
path_model_lbw_growth <- file.path(path_modelled, "lbw-20-growth-re-burned.rds")
path_model_pre <- file.path(path_modelled, "pre-11-full-re-burned.rds")

bwdata_model <- fst::read_fst(bwdata_file)
model_bw_full <- readRDS(path_model_bw_full)
model_bw_growth <- readRDS(path_model_bw_growth)
model_lbw_full <- readRDS(path_model_lbw_full)
model_lbw_growth <- readRDS(path_model_lbw_growth)
model_pre <- readRDS(path_model_pre)

Create figure

types <- factor(c("No", "Yes"))
legend_title <- "Controlling for gestational age?"
guides_none <- guides(fill = "none", col = "none", linetype = "none")

gg_1_1 <- gg_smooths(
    list(model_bw_full, model_bw_growth), bwdata_model,
    "mu", "remoteness", 0, intercept = FALSE
    ) +
    labs(y = "Mean change (grams)", subtitle = "(a)") +
    guides_none
#> Note: Using an external vector in selections is ambiguous.
#> ℹ Use `all_of(var)` instead of `var` to silence this message.
#> ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
#> This message is displayed once per session.
gg_1_2 <- gg_smooths(
    list(model_lbw_full, model_lbw_growth), bwdata_model,
    "pi", "remoteness", 1, intercept = FALSE, FUN = c95_exp
    ) +
    labs(y = "LBW odds ratio", x = "Remoteness", subtitle = "(b)") +
    guides_none

gg_1_3 <- gg_smooths(
    list(model_pre), bwdata_model,
    "pi", "remoteness", 1, types = types[1], intercept = FALSE, FUN = c95_exp
    ) +
    labs(y = "PTB odds ratio", subtitle = "(c)") +
    guides_none

gg_2_1 <- gg_smooths(
    list(model_bw_full, model_bw_growth), bwdata_model,
    "mu", "prop_tap_toilet", 0, intercept = FALSE
    ) +
    labs(y = "Mean change (grams)", subtitle = "(d)") +
    guides_none

gg_2_2 <- gg_smooths(
    list(model_lbw_full, model_lbw_growth), bwdata_model,
    "pi", "prop_tap_toilet", 1, intercept = FALSE, FUN = c95_exp
    ) +
    labs(y = "LBW odds ratio", x = "Population proportion with sanitation", subtitle = "(e)",
         fill = legend_title, col = legend_title, linetype = legend_title) +
    theme(legend.position = "bottom")

gg_2_3 <- gg_smooths(
    list(model_pre), bwdata_model,
    "pi", "prop_tap_toilet", 1, types = types[1], intercept = FALSE, FUN = c95_exp
    ) +
    labs(y = "PTB odds ratio", subtitle = "(f)") +
    guides_none

base_size <- 7
gg <- gg_1_1 + gg_1_2 + gg_1_3 + gg_2_1  + gg_2_2 + gg_2_3 +
    plot_layout(guides = "collect", nrow = 2) &
    theme(legend.position = "bottom",
          legend.title = element_text(size = base_size, face = "bold"),
          legend.text = element_text(size = base_size),
          axis.title = element_text(size = base_size),
          axis.text = element_text(size = base_size),
          plot.title = element_text(size = base_size),
          plot.margin = margin(3, 7, 0, 0))
ggsave(file.path(path_summarised, "paper-mod-eff-municipality-covs.pdf"), gg ,
       width = 18, height = 11.7, units = "cm")
ggsave(file.path(path_summarised, "paper-mod-eff-municipality-covs.jpg"), gg ,
       width = 18, height = 11.7, units = "cm", dpi = 350)

Visualize municipality effects of remoteness and sanitation

print(gg, vp = grid::viewport(gp = grid::gpar(cex = 1.15)))

Time to execute the task

Only useful when executed with Rscript.

proc.time()
#>    user  system elapsed 
#>  54.761   2.846  57.588