Rainfall effects on BW, LBW and PTB without baselines


In this script, we create figures to summarise the rainfall variability effects of the BW, LBW, and PTB models without using pre-defined baselines. This visualization might not be adequate given that the implicit baselines do not represent mother without or low exposure. The results can be seen at:

Load packages, read data and source custom scripts

rm(list = ls())
library(bamlss)
#> Loading required package: coda
#> Loading required package: colorspace
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
#> 
#> Attaching package: 'bamlss'
#> The following object is masked from 'package:mgcv':
#> 
#>     smooth.construct
library(gamlss.dist)
#> Loading required package: MASS
library(ggplot2)
library(patchwork)
#> 
#> Attaching package: 'patchwork'
#> The following object is masked from 'package:MASS':
#> 
#>     area
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following object is masked from 'package:MASS':
#> 
#>     select
#> The following object is masked from 'package:bamlss':
#> 
#>     n
#> The following object is masked from 'package:nlme':
#> 
#>     collapse
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(purrr)

path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
path_summarised <- file.path(path_data, "summarised")

source(file.path(path_proj, "src", "51-bamlss.R"))
source(file.path(path_proj, "src", "57-bamlss-vis-paper.R"))
source(file.path(path_proj, "src", "53-vis-bw-lbw.R"))

bwdata_file <- file.path(path_processed, "bwdata_41_model.fst")
path_model_bw_full <- file.path(path_modelled, "bw-10-full-re-t-burned.rds")
path_model_bw_growth <- file.path(path_modelled, "bw-20-growth-re-t-burned.rds")
path_model_lbw_full <- file.path(path_modelled, "lbw-10-full-re-burned.rds")
path_model_lbw_growth <- file.path(path_modelled, "lbw-20-growth-re-burned.rds")
path_model_pre <- file.path(path_modelled, "pre-11-full-re-burned.rds")

bwdata_model <- fst::read_fst(bwdata_file)
model_bw_full <- readRDS(path_model_bw_full)
model_bw_growth <- readRDS(path_model_bw_growth)
model_lbw_full <- readRDS(path_model_lbw_full)
model_lbw_growth <- readRDS(path_model_lbw_growth)
model_pre <- readRDS(path_model_pre)

data_points_all <- readRDS(file.path(path_processed, "exposure-reference-points.rds"))
data_points_all[[3]][data_points_all[[3]]$label == "A", c("x", "y")] <- c(0.0, 0.0)

Extreme effects

labs_lbw <- c("Prenatal exposure to extreme rainfall events", "Odds ratio of low birthweight")
labs_pre <- c("Prenatal exposure to extreme rainfall events", "Odds ratio of prematurity")
fun_mu <- function (x) c95_expression(x, prefix = paste0('(', letters[1:3], ') '))
fun_pi <- function (x) c95_expression(exp(x), 'odds')

grid <- 50

extreme_term <- 's(neg_ext_mbsi_mean_8wk,pos_ext_mbsi_mean_8wk)'

gg_ext_bw_full <- gg_rain(
    model_bw_full, 'mu', extreme_term, grid = grid, data_points = data_points_all[[3]],
    binwidth = 20, FUN = fun_mu, model.frame = bwdata_model)

gg_ext_bw_growth <- gg_rain(
    model_bw_growth, 'mu', extreme_term, grid = grid, data_points = data_points_all[[3]],
    binwidth = 5, FUN = fun_mu, model.frame = bwdata_model)

data_points_bw <- data_points_all[[3]]
data_points_bw[data_points_bw$label == "E", "y"] <- 0.4

gg_ext_lbw_full <- gg_rain(
    model_lbw_full, 'pi', extreme_term, grid = grid, data_points = data_points_bw,
    binwidth = 0.5, FUN = fun_pi, trans = 'log', rev = TRUE,
    labs_ci = labs_lbw,
    model.frame = bwdata_model, reference = 1)

gg_ext_lbw_growth <- gg_rain(
    model_lbw_growth, 'pi', extreme_term, grid = grid, data_points = data_points_bw,
    binwidth = 0.02, FUN = fun_pi, trans = 'log', rev = TRUE,
    labs_ci = labs_lbw,
    model.frame = bwdata_model, reference = 1)

gg_ext_pre <- gg_rain(
    model_pre, 'pi', extreme_term, grid = grid, data_points = data_points_all[[3]],
    binwidth = 2, FUN = fun_pi, trans = 'log', rev = TRUE,
    labs_ci = labs_pre,
    model.frame = bwdata_model, reference = 1)

Non-extreme effects

non_extreme_term <- "s(neg_mckee_mean_8wk,pos_mckee_mean_8wk)"
non_extreme_labs <- c('Exposure to non-extreme deficient rainfall',
                      'Exposure to non-extreme intense rainfall')
non_extreme_labs_weeks <- c('Weeks exposed to non-extreme deficient rainfall',
                            'Weeks exposed to non-extreme intense rainfall')

gg_non_ext_bw_full <- gg_rain(
    model_bw_full, 'mu', non_extreme_term, grid = grid, data_points = data_points_all[[2]],
    binwidth = 5, FUN = fun_mu,
    labs = non_extreme_labs, labs_weeks = non_extreme_labs_weeks,
    model.frame = bwdata_model)

gg_non_ext_bw_growth <- gg_rain(
    model_bw_growth, 'mu', non_extreme_term, grid = grid, data_points = data_points_all[[2]],
    binwidth = 5, FUN = fun_mu,
    labs = non_extreme_labs, labs_weeks = non_extreme_labs_weeks,
    model.frame = bwdata_model)

gg_non_ext_lbw_full <- gg_rain(
    model_lbw_full, 'pi', non_extreme_term, grid = grid, data_points = data_points_all[[2]],
    binwidth = 0.1, FUN = fun_pi, trans = 'log', rev = TRUE,
    labs = non_extreme_labs, labs_weeks = non_extreme_labs_weeks, labs_ci = labs_lbw,
    model.frame = bwdata_model, reference = 1)

gg_non_ext_lbw_growth <- gg_rain(
    model_lbw_growth, 'pi', non_extreme_term, grid = grid, data_points = data_points_all[[2]],
    binwidth = 0.02, FUN = fun_pi, trans = 'log', rev = TRUE,
    labs = non_extreme_labs, labs_weeks = non_extreme_labs_weeks, labs_ci = labs_lbw,
    model.frame = bwdata_model, reference = 1)

gg_non_ext_pre <- gg_rain(
    model_pre, 'pi', non_extreme_term, grid = grid, data_points = data_points_all[[2]],
    binwidth = 0.5, FUN = fun_pi, trans = 'log', rev = TRUE,
    labs = non_extreme_labs, labs_weeks = non_extreme_labs_weeks, labs_ci = labs_pre,
    model.frame = bwdata_model, reference = 1)

Deviations from seasonality effects

sea_dev_term <- "s(neg_mbsi_mean_1wk,pos_mbsi_mean_1wk)"
sea_dev_labs <- c('Negative deviation from seasonality', 'Positive deviation from seasonality')
sea_dev_labs_weeks <- c('Weeks of negative deviation from seasonality',
                        'Weeks of positive deviation from seasonality')

gg_sea_dev_bw_full <- gg_rain(
    model_bw_full, 'mu', sea_dev_term, grid = grid, data_points = data_points_all[[1]],
    binwidth = 5,
    FUN = function (x) c95_expression(x, prefix = paste0('(', letters[1:3], ') ')),
    labs = sea_dev_labs, labs_weeks = sea_dev_labs_weeks,
    model.frame = bwdata_model)

gg_sea_dev_bw_growth <- gg_rain(
    model_bw_growth, 'mu', sea_dev_term, grid = grid, data_points = data_points_all[[1]],
    binwidth = 5,
    FUN = function (x) c95_expression(x, prefix = paste0('(', letters[1:3], ') ')),
    labs = sea_dev_labs, labs_weeks = sea_dev_labs_weeks,
    model.frame = bwdata_model)

gg_sea_dev_lbw_full <- gg_rain(
    model_lbw_full, 'pi', sea_dev_term, grid = grid, data_points = data_points_all[[1]],
    binwidth = 0.05,
    FUN = function (x) c95_expression(exp(x), 'odds'), trans = 'log', rev = TRUE,
    labs = sea_dev_labs, labs_weeks = sea_dev_labs_weeks, labs_ci = labs_lbw,
    model.frame = bwdata_model, reference = 1)

gg_sea_dev_lbw_growth <- gg_rain(
    model_lbw_growth, 'pi', sea_dev_term, grid = grid, data_points = data_points_all[[1]],
    binwidth = 0.02,
    FUN = function (x) c95_expression(exp(x), 'odds'), trans = 'log', rev = TRUE,
    labs = sea_dev_labs, labs_weeks = sea_dev_labs_weeks, labs_ci = labs_lbw,
    model.frame = bwdata_model, reference = 1)

gg_sea_dev_pre <- gg_rain(
    model_pre, 'pi', sea_dev_term, grid = grid, data_points = data_points_all[[1]],
    binwidth = 0.5,
    FUN = function (x) c95_expression(exp(x), 'odds'), trans = 'log', rev = TRUE,
    labs = sea_dev_labs, labs_weeks = sea_dev_labs_weeks, labs_ci = labs_pre,
    model.frame = bwdata_model, reference = 1)

Create figure of significant effects for BW, LBW and PTB models

model_labs <- c(
    "1) Full birthweight model",
    "2) Growth birthweight model",
    "3) Full low birthweight model",
    "4) Growth low birthweight model",
    "5) Prematurity model"
)
gg <-
    gg_ext_bw_full$significant + labs(title = model_labs[1]) +
    gg_non_ext_bw_full$significant +
    gg_sea_dev_bw_full$significant +
    gg_ext_bw_growth$significant + labs(title = model_labs[2]) +
    gg_non_ext_bw_growth$significant +
    gg_sea_dev_bw_growth$significant +
    gg_ext_lbw_full$significant + labs(title = model_labs[3]) +
    gg_non_ext_lbw_full$significant +
    gg_sea_dev_lbw_full$significant +
    gg_ext_lbw_growth$significant + labs(title = model_labs[4]) +
    gg_non_ext_lbw_growth$significant +
    gg_sea_dev_lbw_growth$significant +
    gg_ext_pre$significant + labs(title = model_labs[5]) +
    gg_non_ext_pre$significant +
    gg_sea_dev_pre$significant +
    plot_layout(nrow = 5)
gg <- gg &
    theme(
          strip.background = element_blank(),
          strip.text.x = element_blank()
    )
ggsave(file.path(path_summarised, "mod-eff-rain-main-significant.pdf"), gg ,
       width = 25, height = 36, units = "cm")

Visualize significant effects for BW, LBW and PTB models

gg

Create reference points effects (with credible intervals) for BW, LBW and PTB models

rain_effect_labs <- c("Extremes events", "Non-extreme events", "Seasonal deviation")
ci_data <- list(gg_ext_bw_full, gg_non_ext_bw_full, gg_sea_dev_bw_full,
                gg_ext_bw_growth, gg_non_ext_bw_growth, gg_sea_dev_bw_growth,
                gg_ext_lbw_full, gg_non_ext_lbw_full, gg_sea_dev_lbw_full,
                gg_ext_lbw_growth, gg_non_ext_lbw_growth, gg_sea_dev_lbw_growth,
                gg_ext_pre, gg_non_ext_pre, gg_sea_dev_pre) %>%
    map(~ .$ci_data[, - c(1:2)]) %>%
    map2(rep(1:5, each = 3), ~ mutate(.x, model = .y)) %>%
    map2(rep(1:3, 5), ~ mutate(.x, rain_effect = .y)) %>%
    bind_rows() %>%
    mutate(
           model = factor(model, labels = model_labs),
           rain_effect = factor(rain_effect, labels = rain_effect_labs)
    )

intercept_data <- expand.grid(rain_effect = rain_effect_labs, model = model_labs) %>%
    mutate(yintercept = rep(c(0, 0, 1, 1, 1), each = 3))

ggp_ci <- function(data, trans = "identity") {
    gg_ci <- ggplot(data, aes(description, mean)) +
        geom_errorbar(aes(ymin = lower, ymax = upper, color = rain_effect),
                      position = position_dodge(0.3), width = 0.2,
                      size = rel(0.4), width = 0.25) +
        geom_point(aes(color = rain_effect),
                   position = position_dodge(0.3), size = rel(2)) +
        # scale_y_continuous(labels = function(x) round_odds(exp(x))) +
        geom_hline(yintercept = 0, lty = 2, col = 1) +
        labs(x = NULL, y = NULL, color = "Rain effect") +
        facet_wrap(~ model) +
        theme_bw(10) +
        theme(legend.position = "none")
        if (trans == 'log') {
            gg_ci <- gg_ci + scale_y_continuous(labels = function(x) round_odds(exp(x)))
        }
    return(gg_ci)
}

gg_ci <- ggp_ci(subset(ci_data, model == model_labs[1])) +
    ggp_ci(subset(ci_data, model == model_labs[2])) +
    ggp_ci(subset(ci_data, model == model_labs[3]), "log") +
    ggp_ci(subset(ci_data, model == model_labs[4]), "log") +
    ggp_ci(subset(ci_data, model == model_labs[5]), "log") +
    theme(legend.position = "bottom") +
    plot_layout(ncol = 2)
#> Warning: Duplicated aesthetics after name standardisation: width

#> Warning: Duplicated aesthetics after name standardisation: width

#> Warning: Duplicated aesthetics after name standardisation: width

#> Warning: Duplicated aesthetics after name standardisation: width

#> Warning: Duplicated aesthetics after name standardisation: width
ggsave(file.path(path_summarised, "mod-eff-rain-main-ci.pdf"), gg_ci,
       width = 23, height = 20, units = "cm")

Visualize reference points effects (with credible intervals) for BW, LBW and PTB models

gg_ci

Time to execute the task

Only useful when executed with Rscript.

proc.time()
#>    user  system elapsed 
#> 142.793   3.515 146.427