Full model with t-distribution: merge samples
Load packages, read data and source custom scripts
rm(list = ls())
library(bamlss)
#> Loading required package: coda
#> Loading required package: colorspace
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
#>
#> Attaching package: 'bamlss'
#> The following object is masked from 'package:mgcv':
#>
#> smooth.construct
library(gamlss.dist)
#> Loading required package: MASS
path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
source(file.path(path_proj, "src", "47-mcmc-merge-samples.R"))
path_modelled_data <- file.path(path_modelled, "bw-10-full-re-t.rds")
path_modelled_continue <- gsub("(\\.rds)$", "-continue\\1", path_modelled_data)
path_modelled_continue2 <- gsub("(\\.rds)$", "-continue2\\1", path_modelled_data)
path_modelled_merged <- gsub("(\\.rds)$", "-merged\\1", path_modelled_data)
model <- readRDS(path_modelled_data)
model_continue2 <- readRDS(path_modelled_continue2)
Merge samples
model$samples <- model_continue2$samples
system.time(saveRDS(model, file = path_modelled_merged))
#> user system elapsed
#> 10.70 0.06 10.81
Maximum auto-correlation function (ACF)
par(mar = c(4, 4, 0.5, 0), mfrow = c(1, 3))
plot(model, model = "mu", which = "max-acf", spar = FALSE)
plot(model, model = "sigma", which = "max-acf", spar = FALSE)
plot(model, model = "nu", which = "max-acf", spar = FALSE)
MCMC convergence
par(mar = c(4, 4, 3, 1), mfrow = c(1, 2))
plot(model, which = "samples")
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 516.062 0.888 519.342