Spatial model with random effects: mcmc
Load packages, read data and source custom scripts
rm(list = ls())
library(bamlss)
#> Loading required package: coda
#> Loading required package: colorspace
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
#>
#> Attaching package: 'bamlss'
#> The following object is masked from 'package:mgcv':
#>
#> smooth.construct
library(gamlss.dist)
#> Loading required package: MASS
path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
model_file <- file.path(path_modelled, "bw-muni-16-sp-re.rds")
model <- readRDS(model_file)
Maximum auto-correlation function (ACF)
par(mar = c(4, 4, 0.5, 0), mfrow = c(1, 2))
plot(model, model = "mu", which = "max-acf", spar = FALSE)
plot(model, model = "sigma", which = "max-acf", ylab = "")
MCMC convergence
par(mar = c(4, 4, 3, 1), mfrow = c(1, 2))
plot(model, which = "samples")
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 19.918 0.225 20.256