Linear remoteness with random effects: fitting
Birthweight model including covariates at municipality level with linear effects.
Load packages, read data and source custom scripts
Paths are defined relative to the git repository location.
rm(list = ls())
library(bamlss)
#> Loading required package: coda
#> Loading required package: colorspace
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
#>
#> Attaching package: 'bamlss'
#> The following object is masked from 'package:mgcv':
#>
#> smooth.construct
library(gamlss.dist)
#> Loading required package: MASS
path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
path_modelled_data <- file.path(path_modelled, "bw-muni-12-remote-re.rds")
path_modelled_sink <- gsub("\\.rds$", "\\.txt", path_modelled_data)
path_modelled_form <- gsub("(\\.rds)$", "-form\\1", path_modelled_data)
bwdata_model <- fst::read_fst(file.path(path_processed, "bwdata_41_model.fst"))
Define formula for our model
Now we define the same models as in the previous study.
form_sigma <- sigma ~ 1
form_mu <- born_weight ~ remoteness + s(res_muni, bs = "re")
form <- list(form_mu, form_sigma)
Run the model of interest and save results
{
sink(path_modelled_sink)
bamlss_model <- bamlss(
form, data = bwdata_model,
n.iter = 1000, burnin = 0, cores = 4, combine = FALSE, light = TRUE
)
sink()
}
readLines(path_modelled_sink)
#> [1] "AICc 4466503. logPost -2455531 logLik -2233247 edf 4.0881 eps 0.0326 iteration 1"
#> [2] "AICc 4458268. logPost -2231120 logLik -2229122 edf 11.652 eps 0.0097 iteration 2"
#> [3] "AICc 4456589. logPost -2228764 logLik -2228262 edf 32.198 eps 0.0038 iteration 3"
#> [4] "AICc 4456380. logPost -2228401 logLik -2228146 edf 43.877 eps 0.0014 iteration 4"
#> [5] "AICc 4456379. logPost -2228385 logLik -2228144 edf 45.290 eps 0.0001 iteration 5"
#> [6] "AICc 4456379. logPost -2228385 logLik -2228144 edf 45.285 eps 0.0000 iteration 6"
#> [7] "AICc 4456379. logPost -2228385 logLik -2228144 edf 45.285 eps 0.0000 iteration 6"
#> [8] "elapsed time: 9.64sec"
#> [9] "Starting the sampler...Starting the sampler...Starting the sampler..."
#> [10] ""
#> [11] ""
#> [12] "Starting the sampler..."
#> [13] ""
#> [14] ""
#> [15] ""
#> [16] "||| | 0% | 0% | 0% 12.35min12.35min12.35min"
#> [17] "| | 0% 13.34min"
#> [18] "|* | 5% 11.27min 35.58sec"
#> [19] "|* | 5% 11.27min 35.59sec"
#> [20] "|* | 5% 11.43min 36.10sec"
#> [21] "|* | 5% 11.52min 36.36sec"
#> [22] "|** | 10% 10.80min 1.20min"
#> [23] "|** | 10% 10.80min 1.20min"
#> [24] "|** | 10% 10.89min 1.21min"
#> [25] "|** | 10% 10.97min 1.22min"
#> [26] ""
#> [27] "|*** | 15%|*** | 15% 10.22min10.22min 1.80min 1.80min"
#> [28] "|*** | 15% 10.31min 1.82min"
#> [29] "|*** | 15% 10.34min 1.83min"
#> [30] "|**** | 20% 9.60min 2.40min"
#> [31] "|**** | 20% 9.61min 2.40min"
#> [32] "|**** | 20% 9.70min 2.42min"
#> [33] "|**** | 20% 9.70min 2.42min"
#> [34] "|***** | 25% 8.99min 3.00min"
#> [35] "|***** | 25% 9.01min 3.00min"
#> [36] "|***** | 25% 9.07min 3.02min"
#> [37] "|***** | 25% 9.08min 3.03min"
#> [38] "|****** | 30% 8.39min 3.59min"
#> [39] "|****** | 30% 8.39min 3.60min"
#> [40] "|****** | 30% 8.44min 3.62min"
#> [41] "|****** | 30% 8.45min 3.62min"
#> [42] "|******* | 35% 7.78min 4.19min"
#> [43] "|******* | 35% 7.78min 4.19min"
#> [44] "|******* | 35% 7.82min 4.21min"
#> [45] "|******* | 35% 7.83min 4.22min"
#> [46] "|******** | 40% 7.18min 4.79min"
#> [47] "|******** | 40% 7.19min 4.79min"
#> [48] "|******** | 40% 7.22min 4.81min"
#> [49] "|******** | 40% 7.23min 4.82min"
#> [50] "|********* | 45% 6.59min 5.39min"
#> [51] "|********* | 45% 6.59min 5.39min"
#> [52] "|********* | 45% 6.62min 5.41min"
#> [53] "|********* | 45% 6.63min 5.42min"
#> [54] "|********** | 50% 5.99min 5.99min"
#> [55] "|********** | 50% 5.99min 5.99min"
#> [56] "|********** | 50% 6.02min 6.02min"
#> [57] "|********** | 50% 6.03min 6.03min"
#> [58] "|*********** | 55% 5.39min 6.59min"
#> [59] "|*********** | 55% 5.40min 6.60min"
#> [60] "|*********** | 55% 5.42min 6.62min"
#> [61] "|*********** | 55% 5.43min 6.63min"
#> [62] "|************ | 60% 4.80min 7.20min"
#> [63] "|************ | 60% 4.80min 7.20min"
#> [64] "|************ | 60% 4.82min 7.23min"
#> [65] "|************ | 60% 4.82min 7.24min"
#> [66] "|************* | 65% 4.20min 7.80min"
#> [67] "|************* | 65% 4.20min 7.81min"
#> [68] "|************* | 65% 4.22min 7.84min"
#> [69] "|************* | 65% 4.22min 7.84min"
#> [70] "|************** | 70% 3.60min 8.40min"
#> [71] "|************** | 70% 3.60min 8.41min"
#> [72] "|************** | 70% 3.62min 8.44min"
#> [73] "|************** | 70% 3.62min 8.44min"
#> [74] "|*************** | 75% 3.00min 9.01min"
#> [75] "|*************** | 75% 3.01min 9.02min"
#> [76] "|*************** | 75% 3.01min 9.04min"
#> [77] "|*************** | 75% 3.02min 9.05min"
#> [78] "|**************** | 80% 2.40min 9.62min"
#> [79] "|**************** | 80% 2.41min 9.62min"
#> [80] "|**************** | 80% 2.41min 9.65min"
#> [81] "|**************** | 80% 2.41min 9.66min"
#> [82] "|***************** | 85% 1.80min 10.22min"
#> [83] "|***************** | 85% 1.80min 10.23min"
#> [84] "|***************** | 85% 1.81min 10.26min"
#> [85] "|***************** | 85% 1.81min 10.26min"
#> [86] "|****************** | 90% 1.20min 10.83min"
#> [87] "|****************** | 90% 1.20min 10.84min"
#> [88] "|****************** | 90% 1.21min 10.87min"
#> [89] "|****************** | 90% 1.21min 10.88min"
#> [90] "|******************* | 95% 36.07sec 11.42min"
#> [91] "|******************* | 95% 36.11sec 11.44min"
#> [92] "|******************* | 95% 36.18sec 11.46min"
#> [93] "|******************* | 95% 36.22sec 11.47min"
#> [94] "|********************| 100% 0.00sec 12.02min"
#> [95] ""
#> [96] "|********************| 100% 0.00sec 12.03min"
#> [97] ""
#> [98] "|********************| 100% 0.00sec 12.05min"
#> [99] ""
#> [100] "|********************| 100% 0.00sec 12.05min"
system.time(saveRDS(bamlss_model, file = path_modelled_data))
#> user system elapsed
#> 2.213 0.008 2.226
saveRDS(form, file = path_modelled_form)
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 2947.190 8.916 757.571