Standardized linear model with random effects: effects
Load packages, read data and source custom scripts
rm(list = ls())
library(bamlss)
#> Loading required package: coda
#> Loading required package: colorspace
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
#>
#> Attaching package: 'bamlss'
#> The following object is masked from 'package:mgcv':
#>
#> smooth.construct
library(gamlss.dist)
#> Loading required package: MASS
path_proj <- day2day::git_path()
path_data <- file.path(path_proj, "data")
path_processed <- file.path(path_data, "processed")
path_modelled <- file.path(path_data, "modelled")
source(file.path(path_proj, "src", "51-bamlss.R"))
bwdata_file <- file.path(path_processed, "bwdata_41_model.fst")
model_file <- file.path(path_modelled, "bw-muni-10-slm-re.rds")
form_file <- gsub("(\\.rds)$", "-form\\1", model_file)
model_file_burned <- gsub("(\\.rds)$", "-burned\\1", model_file)
bwdata_model <- fst::read_fst(bwdata_file)
form <- readRDS(form_file)
model <- readRDS(model_file_burned)
Compute results
model$results <- results.bamlss.default(model)
Summary
summary(model)
#>
#> Call:
#> bamlss(formula = form, data = bwdata_model, cores = 4, combine = FALSE,
#> light = TRUE, n.iter = 1000, burnin = 0)
#> ---
#> Family: gaussian
#> Link function: mu = identity, sigma = log
#> *---
#> Formula mu:
#> ---
#> born_weight ~ remoteness_cd + prop_tap_toilet_cd + s(res_muni,
#> bs = "re")
#> -
#> Parametric coefficients:
#> Mean 2.5% 50% 97.5% parameters
#> (Intercept) 3226.918 3223.352 3227.019 3230.216 3191.57
#> remoteness_cd -60.545 -122.232 -59.422 5.945 -57.49
#> prop_tap_toilet_cd 124.857 -36.923 131.311 249.893 -51.00
#> -
#> Acceptance probabilty:
#> Mean 2.5% 50% 97.5%
#> alpha 0.9981 0.9913 1.0000 1
#> -
#> Smooth terms:
#> Mean 2.5% 50% 97.5% parameters
#> s(res_muni).tau21 2191.78 1347.33 2097.70 3478.19 3823.09
#> s(res_muni).alpha 1.00 1.00 1.00 1.00 NA
#> s(res_muni).edf 41.84 41.27 41.86 42.28 42.35
#> ---
#> Formula sigma:
#> ---
#> sigma ~ 1
#> -
#> Parametric coefficients:
#> Mean 2.5% 50% 97.5% parameters
#> (Intercept) 6.225 6.223 6.225 6.228 6.225
#> -
#> Acceptance probabilty:
#> Mean 2.5% 50% 97.5%
#> alpha 0.9992 0.9940 1.0000 1
#> ---
#> Sampler summary:
#> -
#> runtime = 739.441
#> ---
#> Optimizer summary:
#> -
#> AICc = 4456381 edf = 46.3523 logLik = -2228144
#> logPost = -2228395 nobs = 291479 runtime = 9.96
Parametric effects
par(mar = c(4, 4, 0.5, 0), mfrow = c(1, 2), cex.axis = 0.7)
plot2d_bamlss(model, bwdata_model, model = "mu", term = "remoteness_cd", grid = 50,
FUN = c95)
plot2d_bamlss(model, bwdata_model, model = "mu", term = "prop_tap_toilet_cd", grid = 50,
FUN = c95)
Time to execute the task
Only useful when executed with Rscript
.
proc.time()
#> user system elapsed
#> 22.030 0.323 22.371